Complexity driven collapses in large random economies

Giacomo Livan

Department of Computer Science, University College London
Systemic Risk Centre, London School of Economics and Political Sciences

Econophysics Colloquium, São Paulo

July 29, 2016
A tale of two phase transitions

Financial market

Industrialized economy

Complexity

\(\langle s^* \rangle \)

\(\phi \)

\(X_W \)

\(\pi/n = 0.05, f/n = 0.05 \)

\(\pi/n = 0.05, f/n = 0.15 \)

\(\pi/n = 0.15, f/n = 0.05 \)

\(\pi/n = 0.15, f/n = 0.15 \)

Complexity driven collapses in large random economies
Before we start

★ **Goal**: show that complexity in financial / economic environments can lead to unexpected (catastrophic) consequences

★ **Where**: stylized models that most mainstream economists use and believe in

★ **How**: “promoting” key independent variables to random variables

★ **Benefits**: analytical access to typical properties

★ **Disclaimer**: technically not “our” results!
Collaborators

Matteo Marsili, ICTP (Trieste, Italy)

Marco Bardoscia, LIMS (London, UK)

Financial instability from local market measures

Marco Bardoscia, Giacomo Livan and Matteo Marsili
Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
E-mail: marco.bardoscia@ictp.it, glivan@ictp.it and marsili@ictp.it
Part I: Modeling the emergence of arbitrage opportunities

★ Financial institutions need to price a very large number of instruments every day

★ Different institutions use different models and calibrate them on different data
 ★ Models have to be simple \(\Rightarrow\) \textit{unavoidable approximations}

★ It has been argued that exceedingly different models and/or calibration datasets might lead to a system of inconsistent prices, which in turn might lead to:
 ★ \textit{Arbitrage opportunities}
 ★ Trading activity that induces \textit{further misalignment} (self-sustaining bubbles)

★ This talk: stylized statistical model to link heterogeneity in pricing models and emergence of arbitrage opportunities
One period economies

Ingredients:

- Set of N financial instruments
- Initial time $t = 0$ and final time $t = 1$
- Set Ω of possible time 1 states of the world (unknown at time 0)

- Risk neutral probability measure (RNPM) q on Ω: $\sum_{\omega=1}^{\Omega} q^\omega = 1$

\[
q^\omega > 0 \quad \text{for all } \omega \in \Omega
\]

\[
s_i(0) = \sum_{\omega=1}^{\Omega} q^\omega s_i^\omega(1) = \langle s_i(1) \rangle_q \quad \text{for } i = 1, \ldots, N
\]

- RNPMs allow to compute the fair price of financial instruments
One period economies

Ingredients:

- Set of N financial instruments
- Initial time $t = 0$ and final time $t = 1$
- Set Ω of possible time 1 states of the world (unknown at time 0)

- Risk neutral probability measure (RNPM) q on Ω: $\sum_{\omega=1}^{\Omega} q^\omega = 1$

 $q^\omega > 0$ for all $\omega \in \Omega$

 $s_i(0) = \sum_{\omega=1}^{\Omega} q^\omega s_i^\omega(1) = \langle s_i(1) \rangle_q$ for $i = 1, \ldots, N$

- RNPMs allow to compute the fair price of financial instruments
Formal setup

- **Portfolio**: \(V(0) = \sum_{i=1}^{N} w_i s_i(0) \rightarrow V^\omega(1) = \sum_{i=1}^{N} w_i s_i^\omega(1) \)
- **Arbitrage opportunity**: a portfolio investment strategy such that

\[
V^\omega(1) \geq V(0) \quad \text{for all } \omega \in \Omega
\]
\[
V^{\omega'}(1) > V(0) \quad \text{for at least one } \omega'
\]

THEOREM: no arbitrage opportunities if and only if there exists a RNPM on \(\Omega \).

How many RNPMs are there?

For a given system of prices we need to solve a system of \(N \) equations in \(\Omega \) unknowns

\[
\sum_{\omega=1}^{\Omega} q^\omega s_i^\omega(1) = s_i(0)
\]

- If \(\Omega = N \): one solution (not necessarily \(q^\omega > 0 \ \forall \omega \))
- If \(\Omega > N \): infinitely many
- If \(N > \Omega \): none
The arbitrage region

- **Assumption:** each financial instrument is priced according to a specific probability measure (not necessarily a RNPM)

\[
\text{instrument } i \longleftrightarrow \text{pricing measure } q_i^\omega
\]

\[
s_i(0) = \langle s_i(1) \rangle q_i = \sum_{\omega=1}^{\Omega} q_i^\omega s_i^\omega(1)
\]

- **Question:** when do RNPMs exist for such a market?

- **Solution:** computing the volume of the arbitrage region, i.e. region in the \(N\)-dimensional space of portfolio weights \(\{w_1, \ldots, w_N\}\) such that for any state \(\omega\)

\[
V^\omega(1) - V(0) \geq 0 \implies \sum_{i=1}^{N} w_i(s_i^\omega(1) - s_i(0)) \geq 0
\]

- **Arbitrage region volume:**

\[
V = \int_{-\infty}^{+\infty} dw_1 \ldots \int_{-\infty}^{+\infty} dw_N \prod_{\omega=1}^{\Omega} \Theta \left(\sum_{i=1}^{N} w_i(s_i^\omega(1) - s_i(0)) \right)
\]
A random geometry approach

- Computing the arbitrage region volume for an individual market is hard

- **Solution**: consider an ensemble of markets by promoting returns and pricing measures to random variables

Statistical Physics of disordered systems

- We look for **self-averaging quantities** in the limit $N, \Omega \to \infty$ with $n = N/\Omega$ fixed
- Self-averaging quantities are typically intensive quantities, we expect $V \sim \ell^N$ so we compute

$$\frac{1}{N} \langle \log V \rangle_{s,q}$$

- Using replicas we find a general solution that depends on the statistical properties of the returns and pricing measures
Case study: subset of states

* Each instrument is priced only on a subset $\Omega_K \subset \Omega$ states made of K states

$$q_\omega^i = \begin{cases}
 1/K & \text{if } \omega \in \Omega_K \\
 0 & \text{if } \omega \notin \Omega_K
\end{cases}$$

* Gaussian returns: $s_\omega^i(1) - s_\omega^i(0) \sim N(0, 1)$

* $k = K/\Omega$ measures heterogeneity between pricing measures
Proof of concept: a system of exceedingly different pricing measures may give rise to arbitrage opportunities (financial instabilities)

Complexity \Rightarrow Arbitrage \Rightarrow Speculative investments

Results support the call by Albanese et al. for global pricing measures!

Part II: Micro(economics) \longrightarrow Macro(economics)

- **General problem**: aggregating microeconomic behaviour and interactions between economic agents into macroeconomic laws

- **Specific problem**: understanding the macroeconomic behaviour of modern industrialized economies

- **Input-output analysis**: understanding the linkages and mutual impact between different productive entities

 output from sector / firm A \longrightarrow input to sector / firm B
Input-output analysis (I)

Pre-industrial era: Tableaux économiques (1758)

Figure: François Quesnay (1694-1774)
Economies have evolved to remarkable levels of complexity: the production of technologically sophisticated objects involves multiple production processes feeding each other, often delocalized / outsourced across multiple firms.

Modern input-output models are written in the language of General Equilibrium (GE) Theory:

- **Profit maximizing firms** ↔ **utility maximizing consumers** ↔ **market prices**
A GE input–output model (I)

Ingredients:

- C goods
 - Raw goods: $x_0^c = 1$
 - Consumer goods: $k^c = 1$

<table>
<thead>
<tr>
<th></th>
<th>$x_0^c = 1$</th>
<th>$x_0^c = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>k^c</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

- N technologies / firms
 - $q_i^c < 0$: good c is an input to technology i
 - $q_i^c > 0$: good c is an output of technology i
A GE input–output model (II)

Goal: determining equilibrium prices p^c such that

- Firms maximize profits r_i by setting scales of production $s_i \geq 0$

$$r_i = s_i \sum_{c=1}^{C} p^c q_i^c$$

- Consumers maximizes utility compatibly with a budget constraint

$$U(x) = \sum_{c=1}^{C} k^c u(x^c)$$

- Consumption

$$x^c = x_0^c + \sum_{i=1}^{N} s_i q_i^c \geq 0$$

Initial endowment

Net production
GE meets Complexity

★ Problems of standard GE approach:
 1) No heterogeneity (representative consumer)
 2) Reliance on precise knowledge of the economy’s input–output matrix \(q_i^c \)

★ Solution: “promoting” \(q_i^c \) and goods’ labels \(x_0^c, k^c \) to random variables

Systems with random interactions

F. Dyson: “What is here required is a new kind of statistical mechanics, in which we renounce exact knowledge not of the state of the system but of the system itself.”

★ Methods: averaging over ensemble of economies in the limit \(N, C \to \infty \) with \(n = \frac{N}{C} \) fixed → Averaging over all possible input–output matrices and all possible representative agents

★ Analytical access to the economy’s typical properties
The economy’s phase diagram

\[n = \frac{N}{C} = \frac{\text{# of technologies}}{\text{# of goods}} \]

\[\pi = \frac{\text{# raw goods}}{\text{# of goods}} \]

\[\langle s^* \rangle = \text{average scale of production} \]

Result: Transition from no-industrialization trap to industrial production happens without need to invoke a “big push”

Result: Introduction of new technologies has different impacts in different regimes

Giacomo Livan (UCL & LSE) Complexity driven collapses in large random economies
Economic expansion through intermediate goods

- Economies can expand via outsourcing / externalization, i.e. the creation of new markets for intermediate goods
- Increase in the number of firms \rightarrow increase in the number of interactions through market prices \rightarrow increase in complexity!
Complexity driven collapse of equilibria

\[
\langle s^* \rangle_{0,0.05, 0.05}, \langle s^* \rangle_{0,0.15, 0.05}, \langle s^* \rangle_{0,0.05, 0.15}, \langle s^* \rangle_{0,0.15, 0.15}
\]

\[
\phi = \frac{\text{fraction of active firms}}{\text{fraction of intermediate goods}}
\]

\[
X_W = \text{waste}
\]

* Result: expansion of the economy via externalization / outsourcing leads to a sudden shutdown
Nature of the phase transition

* Optimization problem for consumers

\[
\max_{\{s \geq 0\}} U(x) \quad \text{where} \quad x^c = x_0^c + \sum_{i=1}^N s_i q_i^c \geq 0
\]

* Volume of possible solution space

\[
V = \int_0^\infty ds_1 \ldots \int_0^\infty s_N \prod_{c=1}^C \Theta \left(x_0^c + \sum_{i=1}^N s_i q_i^c \right)
\]

* Same problem as the arbitrage volume!
Remarks

- Full solution of GE in a simple input-output setting
- NOT our predictions → GE’s predictions!
- Analytical treatment of combinatorial phase transition in high-dimensional geometry (see Donoho and Tanner (2009))

Figure 4 Greece: Real GDP (2005=100)

Sources: IMF; EC; authors’ calculations