Representation theory of Lie algebra of vector fields on a torus

Yuly Billig

\(^1\)Carleton University, Ottawa

ICTP-SAIFR Workshop on Mathematical Physics,
June 16-17, 2016
Functions on a torus:
\[A = \mathbb{C}[t_1^{\pm 1}, \ldots, t_N^{\pm 1}] \].
Functions on a torus:
\[A = \mathbb{C}[t_1^{\pm 1}, \ldots, t_N^{\pm 1}] \].

Vector fields on a torus:
\[W_N = \text{Der } A = \bigoplus_{p=1}^{N} \mathbb{C}[t_1^{\pm 1}, \ldots, t_N^{\pm 1}] \frac{\partial}{\partial t_p} \].
Functions on a torus:
\[A = \mathbb{C}[t_1^{\pm 1}, \ldots, t_N^{\pm 1}] \].

Vector fields on a torus:
\[\mathcal{W}_N = \text{Der} A = \bigoplus_{p=1}^{N} \mathbb{C}[t_1^{\pm 1}, \ldots, t_N^{\pm 1}] \frac{\partial}{\partial t_p} . \]

Let \(d_k = t_k \frac{\partial}{\partial t_k} \). Cartan subalgebra: \(\{d_1, \ldots, d_N\} \)
Functions on a torus:
\[A = \mathbb{C}[t_1^{\pm 1}, \ldots, t_N^{\pm 1}] \).

Vector fields on a torus:
\[W_N = \text{Der} A = \bigoplus_{\rho=1}^{N} \mathbb{C}[t_1^{\pm 1}, \ldots, t_N^{\pm 1}] \frac{\partial}{\partial t_\rho}. \]

Let \(d_k = t_k \frac{\partial}{\partial t_k} \). Cartan subalgebra: \(\{d_1, \ldots, d_N\} \) induces \(\mathbb{Z}^n \)-grading on \(W_N \).
Let U be a finite-dimensional $gl(N)$-module.
Let U be a finite-dimensional $gl(N)$-module.

$\mathbb{C}[t_{1}^{\pm 1}, \ldots, t_{N}^{\pm 1}] \otimes U$ admits the action (via Lie derivative) of W_{N}:
Let U be a finite-dimensional $\mathfrak{gl}(N)$-module.

$\mathbb{C}[t_1^{\pm 1}, \ldots, t_N^{\pm 1}] \otimes U$ admits the action (via Lie derivative) of W_N:

$$
t^s d_a(t^m \otimes u) = m_a t^{m+s} \otimes u + \sum_{p=1}^{N} s_p t^{m+s} \otimes E_{pa} u.
$$
Let U be a finite-dimensional $gl(N)$-module.

$\mathbb{C}[t_1^{\pm 1}, \ldots, t_N^{\pm 1}] \otimes U$ admits the action (via Lie derivative) of W_N:

$$t^s d_a(t^m \otimes u) = m_a t^{m+s} \otimes u + \sum_{p=1}^{N} s_p t^{m+s} \otimes E_{pa} u.$$

• Harish-Chandra modules
Theorem (E. Rao, 1996)

Let U be an irreducible finite-dimensional $\mathfrak{gl}(N)$-module. Then

$$V = \mathbb{C}[t_1^{\pm 1}, \ldots, t_N^{\pm 1}] \otimes U$$

is an irreducible W_N-module,
Theorem (E. Rao, 1996)

Let U be an irreducible finite-dimensional $\text{gl}(N)$-module. Then

$$V = \mathbb{C}[t_1^{\pm 1}, \ldots, t_N^{\pm 1}] \otimes U$$

is an irreducible W_N-module,
Irreducible tensor modules

Theorem (E. Rao, 1996)

Let U be an irreducible finite-dimensional $\text{gl}(N)$-module. Then

$$V = \mathbb{C}[t_1^{\pm 1}, \ldots, t_N^{\pm 1}] \otimes U$$

is an irreducible W_N-module, unless it appears in the de Rham complex:

$$\Omega^0(\mathbb{T}^N) \to \Omega^1(\mathbb{T}^N) \to \ldots \to \Omega^N(\mathbb{T}^N).$$
Definition

An AW_N-module V is a module for W_N, and simultaneously a module for the commutative unital algebra A, with the two actions being compatible:

$$\eta(fv) = \eta(f)v + f(\eta v),$$

for $\eta \in W_N$, $f \in A$, $v \in V$.
Definition

An AW_N-module V is a module for W_N, with the two actions being compatible: $\eta(f_{V}) = \eta(f)v + f(\eta v)$, for $\eta \in W_N$, $f \in A$, $v \in V$.

Yuly Billig Representation Theory of W_n
Definition

An AW_N-module V is a module for W_N, and simultaneously a module for the commutative unital algebra A, with the two actions being compatible:

$$\eta(fv) = \eta(f)v + f(\eta v),$$

for $\eta \in W_N$, $f \in A$, $v \in V$.

Yuly Billig
Representation Theory of W_n
Definition

An AW_N-module V is a module for W_N, and simultaneously a module for the commutative unital algebra A, with the two actions being compatible:
Definition

An AW_N-module V is a module for W_N, and simultaneously a module for the commutative unital algebra A, with the two actions being compatible:

$$\eta(fv) = \eta(f)v + f(\eta v), \quad \text{for } \eta \in W_N, f \in A, v \in V.$$
Let $\mathcal{L} = \text{Der} \, \mathbb{C}[x_1, \ldots, x_N]$
Let $\mathcal{L} = \text{Der} \mathbb{C}[x_1, \ldots, x_N] = \mathcal{L}_{-1} \oplus \mathcal{L}_0 \oplus \mathcal{L}_1 \oplus \ldots$
Equivalence of categories

Let $\mathcal{L} = \text{Der} \mathbb{C}[x_1, \ldots, x_N] = \mathcal{L}_{-1} \oplus \mathcal{L}_0 \oplus \mathcal{L}_1 \oplus \ldots$

Set $\mathcal{L}_+ = \mathcal{L}_0 \oplus \mathcal{L}_1 \oplus \ldots$
Equivalence of categories

Let $\mathcal{L} = \text{Der} \mathbb{C}[x_1, \ldots, x_N] = \mathcal{L}_{-1} \oplus \mathcal{L}_0 \oplus \mathcal{L}_1 \oplus \ldots$

Set $\mathcal{L}_+ = \mathcal{L}_0 \oplus \mathcal{L}_1 \oplus \ldots$

Theorem (Y.B., 2004)

The category of AW_N-modules with finite-dimensional weight spaces and weight lattice \mathbb{Z}^N is equivalent to the category of finite-dimensional \mathcal{L}_+-modules.
Let $\mathcal{L} = \text{Der} \mathbb{C}[x_1, \ldots, x_N] = \mathcal{L}_{-1} \oplus \mathcal{L}_0 \oplus \mathcal{L}_1 \oplus \ldots$

Set $\mathcal{L}_+ = \mathcal{L}_0 \oplus \mathcal{L}_1 \oplus \ldots$

Theorem (Y.B., 2004)

The category of AW$_N$-modules with finite-dimensional weight spaces and weight lattice \mathbb{Z}^N is equivalent to the category of finite-dimensional \mathcal{L}_+-modules.
Let $\mathcal{L} = \text{Der} \, \mathbb{C}[x_1, \ldots, x_N] = \mathcal{L}_{-1} \oplus \mathcal{L}_0 \oplus \mathcal{L}_1 \oplus \ldots$

Set $\mathcal{L}_+ = \mathcal{L}_0 \oplus \mathcal{L}_1 \oplus \ldots$

Theorem (Y.B., 2004)

The category of AW_N-modules with finite-dimensional weight spaces and weight lattice \mathbb{Z}^N is equivalent to the category of finite-dimensional \mathcal{L}_+-modules.

Let U be a finite-dimensional \mathcal{L}_+-module. Then

$\mathbb{C}[x_1, \ldots, x_N] \otimes U$ admits the action of W_N:

...
Equivalence of categories

Let $\mathcal{L} = \text{Der} \, \mathbb{C}[x_1, \ldots, x_N] = \mathcal{L}_{-1} \oplus \mathcal{L}_0 \oplus \mathcal{L}_1 \oplus \ldots$

Set $\mathcal{L}_+ = \mathcal{L}_0 \oplus \mathcal{L}_1 \oplus \ldots$

Theorem (Y.B., 2004)

The category of AW_N-modules with finite-dimensional weight spaces and weight lattice \mathbb{Z}^N is equivalent to the category of finite-dimensional \mathcal{L}_+-modules.

Let U be a finite-dimensional \mathcal{L}_+-module. Then $\mathbb{C}[x_1, \ldots, x_N] \otimes U$ admits the action of W_N:

$$t^s d_a \left(t^m \otimes u \right) = m_a t^{m+s} \otimes u + \sum_{k \in \mathbb{Z}^N \setminus \{0\}} \frac{s^k}{k!} t^{m+s} \otimes \rho \left(x^k \frac{\partial}{\partial x_a} \right) u.$$
Cuspidal modules = Harish-Chandra modules with a global bound on dimensions of weight spaces.
Cuspidal modules = Harish-Chandra modules with a global bound on dimensions of weight spaces.

Theorem (B. - Futorny, 2013)

For a cuspidal W_N-module V satisfying $W_N V = V$, there exists a cuspidal AW_N-module M with a surjective homomorphism of W_N-modules:

\[\pi : M \rightarrow V. \]
Theorem (B. Futorny, 2013)

Every irreducible Harish-Chandra module for W_N is either
(1) a quotient of a tensor module,
Theorem (B. - Futorny, 2013)

Every irreducible Harish-Chandra module for W_N is either
(1) a quotient of a tensor module,
Theorem (B. - Futorny, 2013)

Every irreducible Harish-Chandra module for W_N is either
(1) a quotient of a tensor module,
or
(2) a module of a highest weight type, induced from a tensor module of rank $N - 1$,

Yuly Billig
Representation Theory of W_n
Theorem (B. - Futorny, 2013)

Every irreducible Harish-Chandra module for W_N is either
(1) a quotient of a tensor module,
or
(2) a module of a highest weight type, induced from a tensor module of rank $N - 1$, and twisted with an automorphism from $GL_N(\mathbb{Z})$.
Consider $W_{N+1} = \text{Der} \mathbb{C}[t_0^{\pm 1}, t_1^{\pm 1}, \ldots, t_N^{\pm 1}]$
Consider $W_{N+1} = \text{Der} \mathbb{C}[t_0^{\pm 1}, t_1^{\pm 1}, \ldots, t_N^{\pm 1}]$ with \mathbb{Z}-grading by d_0.
Consider $W_{N+1} = \text{Der} \mathbb{C}[t_0^{\pm 1}, t_1^{\pm 1}, \ldots, t_N^{\pm 1}]$ with \mathbb{Z}-grading by d_0.

$$W_{N+1} = W_{N+1}^- \oplus W_{N+1}^0 \oplus W_{N+1}^+.$$
Consider $W_{N+1} = \text{Der} \ C[t_0^{\pm 1}, t_1^{\pm 1}, \ldots, t_N^{\pm 1}]$ with \mathbb{Z}-grading by d_0.

$$W_{N+1} = W_{N+1}^- \oplus W_{N+1}^0 \oplus W_{N+1}^+.$$

$$W_{N+1}^0 = W_N \oplus C[t_1^{\pm 1}, \ldots, t_N^{\pm 1}]d_0.$$
Consider \(W_{N+1} = \text{Der} \mathbb{C}[t_0^{\pm 1}, t_1^{\pm 1}, \ldots, t_N^{\pm 1}] \) with \(\mathbb{Z} \)-grading by \(d_0 \).

\[
W_{N+1} = W_{N+1}^- \oplus W_{N+1}^0 \oplus W_{N+1}^+.
\]

\[
W_{N+1}^0 = W_N \oplus \mathbb{C}[t_1^{\pm 1}, \ldots, t_N^{\pm 1}] d_0.
\]

Let \(V \) be a tensor module for \(W_N \) with the action of \(t^s d_0 \) by \(\alpha t^s \),
\[
\alpha \in \mathbb{C}.
\]
Consider $W_{N+1} = \text{Der} \mathbb{C}[t_0^{\pm 1}, t_1^{\pm 1}, \ldots, t_N^{\pm 1}]$ with \mathbb{Z}-grading by d_0.

$$W_{N+1} = W_{N+1}^- \oplus W_{N+1}^0 \oplus W_{N+1}^+.$$

$$W_{N+1}^0 = W_N \oplus \mathbb{C}[t_1^{\pm 1}, \ldots, t_N^{\pm 1}]d_0.$$

Let V be a tensor module for W_N with the action of $t^s d_0$ by αt^s,

$\alpha \in \mathbb{C}$.

Let $W_{N+1}^+ V = (0)$.
Consider $W_{N+1} = \text{Der} \mathbb{C}[t_0^{\pm 1}, t_1^{\pm 1}, \ldots, t_N^{\pm 1}]$ with \mathbb{Z}-grading by d_0.

\[
W_{N+1} = W_{N+1}^- \oplus W_{N+1}^0 \oplus W_{N+1}^+.
\]

\[
W_{N+1}^0 = W_N \oplus \mathbb{C}[t_1^{\pm 1}, \ldots, t_N^{\pm 1}]d_0.
\]

Let V be a tensor module for W_N with the action of $t^s d_0$ by αt^s, \(\alpha \in \mathbb{C}\).

Let $W_{N+1}^+ V = (0)$ and consider the induced module

\[
M(V) = U(W_{N+1}^-) \otimes V.
\]
Theorem (Berman - B., 1999)

(1) $M(V)$ has a unique maximal submodule M^{rad}.
Irreducible modules of the highest weight type

Theorem (Berman - B., 1999)

(1) $M(V)$ has a unique maximal submodule M^{rad}.
Theorem (Berman - B., 1999)

(1) $M(V)$ has a unique maximal submodule M^{rad}.

(2) $L(V) = M(V)/M^{\text{rad}}$ is an irreducible Harish-Chandra module.
Let $V_{Hyp} = \mathbb{C}[t_1^{\pm 1}, \ldots, t_N^{\pm 1}] \otimes \mathbb{C}[u_{pj}, v_{pj} | p = 1, \ldots, N, j \in \mathbb{N}]$.
Let $V_{Hyp} = \mathbb{C}[t_1^{\pm 1}, \ldots, t_N^{\pm 1}] \otimes \mathbb{C}[u_{pj}, v_{pj} \mid p = 1, \ldots, N, j \in \mathbb{N}]$.

Let $V_{\hat{gl}_N}$ be the \hat{gl}_N vertex algebra at level 1.
Let $V_{Hyp} = \mathbb{C}[t_1^{\pm 1}, \ldots, t_N^{\pm 1}] \otimes \mathbb{C}[u_{pj}, v_{pj} \mid p = 1, \ldots, N, j \in \mathbb{N}]$.

Let $V_{\hat{gl}_N}$ be the \hat{gl}_N vertex algebra at level 1.

Let V_{Vir} be the Virasoro vertex algebra with central charge 0.
Theorem (B. - Futorny, 2011)

Let L_{Hyp} be a module for V_{Hyp}, $L_{\hat{gl}_N}$ be a module for $V_{\hat{gl}_N}$ and L_{Vir} be a module for V_{Vir}.

Then $L = L_{\text{Hyp}} \otimes L_{\hat{gl}_N} \otimes L_{\text{Vir}}$ admits the action of W_{N+1}.

If L_{Hyp}, $L_{\hat{gl}_N}$ and L_{Vir} are irreducible then L is an irreducible W_{N+1}-module of the highest weight type, unless L appears in the chiral de Rham complex.
Theorem (B. - Futorny, 2011)

Let \(L_{\text{Hyp}} \) be a module for \(V_{\text{Hyp}} \), \(L_{\hat{gl}_N} \) be a module for \(V_{\hat{gl}_N} \) and \(L_{\text{Vir}} \) be a module for \(V_{\text{Vir}} \).

Then

\[
L = L_{\text{Hyp}} \otimes L_{\hat{gl}_N} \otimes L_{\text{Vir}}
\]

admits the action of \(W_{N + 1} \).

If \(L_{\text{Hyp}}, L_{\hat{gl}_N} \) and \(L_{\text{Vir}} \) are irreducible then \(L \) is an irreducible \(W_{N + 1} \)-module of the highest weight type, unless \(L \) appears in the chiral de Rham complex.
Theorem (B. - Futorny, 2011)

Let L_{Hyp} be a module for V_{Hyp}, $L_{\widehat{gl}_N}$ be a module for $V_{\widehat{gl}_N}$ and L_{Vir} be a module for V_{Vir}. Then

$$L = L_{\text{Hyp}} \otimes L_{\widehat{gl}_N} \otimes L_{\text{Vir}}$$

admits the action of W_{N+1}.
Theorem (B. - Futorny, 2011)

Let L_{Hyp} be a module for V_{Hyp}, $L_{\widehat{gl}_N}$ be a module for $V_{\widehat{gl}_N}$ and L_{Vir} be a module for V_{Vir}. Then

$$L = L_{\text{Hyp}} \otimes L_{\widehat{gl}_N} \otimes L_{\text{Vir}}$$

admits the action of W_{N+1}.

If L_{Hyp}, $L_{\widehat{gl}_N}$ and L_{Vir} are irreducible then L is an irreducible W_{N+1}-module of the highest weight type,
Theorem (B. - Futorny, 2011)

Let L_{Hyp} be a module for V_{Hyp}, $L_{\widehat{gl}_N}$ be a module for $V_{\widehat{gl}_N}$ and L_{Vir} be a module for V_{Vir}. Then

$$L = L_{\text{Hyp}} \otimes L_{\widehat{gl}_N} \otimes L_{\text{Vir}}$$

admits the action of W_{N+1}.

If L_{Hyp}, $L_{\widehat{gl}_N}$ and L_{Vir} are irreducible then L is an irreducible W_{N+1}-module of the highest weight type, unless L appears in the chiral de Rham complex.
Chiral de Rham complex

[Malikov-Shekhtman-Vaintrob, 1998] Let $V_{\mathbb{Z}^N}$ be the lattice vertex superalgebra. Then

$$\Omega_{ch} = L_{Hyp} \otimes V_{\mathbb{Z}^N}$$
[Malikov-Shekhtman-Vaintrob, 1998]

Let $V_{\mathbb{Z}^N}$ be the lattice vertex superalgebra. Then

$$\Omega_{ch} = L_{Hyp} \otimes V_{\mathbb{Z}^N}$$

has a fermionic \mathbb{Z}-grading and a differential:

$$\ldots \rightarrow \Omega_{ch}^{-2} \rightarrow \Omega_{ch}^{-1} \rightarrow \Omega_{ch}^{0} \rightarrow \Omega_{ch}^{1} \rightarrow \ldots$$
[Malikov-Shekhtman-Vaintrob, 1998] Let $V_{\mathbb{Z}^N}$ be the lattice vertex superalgebra. Then

$$\Omega_{ch} = L_{Hyp} \otimes V_{\mathbb{Z}^N}$$

has a fermionic \mathbb{Z}-grading and a differential:

$$\ldots \rightarrow \Omega_{ch}^{-2} \rightarrow \Omega_{ch}^{-1} \rightarrow \Omega_{ch}^0 \rightarrow \Omega_{ch}^1 \rightarrow \ldots$$

Theorem (B. - Futorny, 2011)

Each component of the chiral de Rham complex is a W_{N+1}-module, and each differential is a homomorphism of W_{N+1}-modules.